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Anisotropic spectra of acoustic turbulence

V. S. L’vov,1,2 Yu. V. L’vov,3* and A. Pomyalov1
1Departments of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

2Institute for Automatization, Russian Academy of Science, Novosibirsk 630090, Russia
3Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180

~Received 19 May 1999!

We found universal anizopropic spectra of acoustic turbulence with the linear dispersion lawv(k)5ck
within the framework of generalized kinetic equation which takes into account the finite time of three-wave
interactions. This anisotropic spectra can assume both scale-invariant and non-scale-invariant form. The im-
plications for the evolution of the acoustic turbulence with nonisotropic pumping are discussed. The main
result of the article is that the spectra of acoustic turbulence tend to become more isotropic.
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I. INTRODUCTION AND GENERAL DISCUSSION

Wave turbulence, which describes the behavior of a s
tially homogeneous field of random dispersive waves,
led to spectacular success in our understanding of spe
energy transfer processes in plasmas, oceans, and plan
atmospheres@1#. In the case of small level of nonlinearitye
~for example, for the surface waves this is the ratio of
wave amplitudeh to the wavelengthl,e5h/l!, there is a
consistent description of the weak wave turbulence in te
of so calledkinetic equation~KE! which describes the en
ergy transfer due to interactions of three~in some cases four!
waves with the conservation of energy and momenta

v~k!6v~k1!2v~k2!50, k6k12k250. ~1!

These equations on a classical language are a conditio
time-space resonance. Equations~1! show that acoustic
waves are special: interacting waves have to have par
wave vectors

kik1ik2 , ~2!

and therefore the interacting acoustic waves are foliated
noninteracting rays of waves propagating in different dir
tions. Immediately a few important questions arise.

~1! What are the mechanisms responsible for an ene
redistribution between different rays?

~2! How does the energy become shared between ne
boring rays?

~3! Does the energy tend to diffuse away from the r
with maximum energy or can it focus onto that ray? In t
latter case, one might argue that shock formation may ag
become the relevant process especially if the energy sh
condense on rays with very different directions.

~4! Is the approximation of the KE adequate for a descr
tion of acoustic turbulence even in the case of small non
earity?
The positive answer on the last question is problematic@1#.
Approximation of KE is based on the randomization
phases of noninteracting waves leading to the Gaussian

*Electronic address: lvovy@rpi.edu
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tistics and requires weakness of the interactione2!1 to en-
sure the closeness the wave statistics to Gaussianity.
happens in some physical situations, but not for acou
waves. The physical reason is the above described foliat
for each particular~noninteracting! ray of waves one may
pass into comoving~with the sound velocityc! reference
system in which all the waves are in the rest and theref
their interaction time goes to infinity. Therefore for an
small level of nonlinearity the waves have enough time
the finally large deviation of phases from the random Gau
ian distribution. This is exactly the reason why in one dime
sional case one has a creation of shock waves~which may be
described by the Burgers equation! for any ~small! level of
nonlinearity. If really acoustic waves tend to focus, the a
proximation of KE is problematic even qualitatively. In th
paper we will show that this is not the case and therefore
approximation of KE may serve at least as a starting poin
describe nondispersive acoustic turbulence.

The answers on the first three questions for weakly d
persive acoustic waves was done a long ago by one o
~V.L.! and G. Falkovich@2#. We showed that weakly disper
sive waves, say with the dispersion law

v~k!}k11d, d!1, ~3!

really tends to focus. Namely, the isotropic solution of t
KE

n0~k!5ak29/2 ~a is a dimensional constant!, ~4!

found by Zakharov and Sagdeev in 1970@3# is unstable in
the sense that the anisotropic solutions of the KE found
Ref. @2#:

nlp~k!}
~kL!d~ l 1p!/2

k9/2 F12
k•n

k G lF l 1
k•n

k G p

~5!

increases withk from the pumping scale 1/L toward the
depth of the inertial intervalkL@1 faster than the isotropic
one~4!. In Eq.~5! n is the unit vector which is determined b
anisotropy of the pumping. Observe that the ratio

nlp~k!

n0~k!
}~kL!d~ l 1p!/2 ~6!
2586 ©2000 The American Physical Society
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PRE 61 2587ANISOTROPIC SPECTRA OF ACOUSTIC TURBULENCE
increases faster for more anisotropic shapes~larger l andp!
and for more dispersive waves with biggerd. In this sense
the nondispersive waves withd50,v(k)}k are marginal,
nlp(k)/n0(k)}k05const and any angle distributionn(k) is a
solution of the KE atd50. Clearly this is a consequence
the foliation described above. However, physical intuiti
tells us that there should be some mechanism of redistri
ing energy between neighboring rays even for fully nond
persive waves. Indeed, the fact that all interacting wa
have parallel wave vectors follows from the time-space re
nance conditions~1!. These conditions are valid with som
accuracy which is determined by the life time of the wav
and therefore neighboring rays can really interact. In
recent paper@4# we generalized the KE for acoustic waves
account the finite width of the resonances. Generalized
e

th
ut
ty,

-

e
le

-

he
io

-

a

t-
-
s
-

s
r

i-

netic equation ~GKE! for the ‘‘occupation numbers o
waves’’ n(k,t) has the form

]n~k,t !

]t
5Stk~$n~k8,t !%!, ~7!

where the collision term Stk($n(k8,t)%) is a functional of the
occupation numbersn(k8,t)% with all wave vectorsk8 but at
the same moment of timet @which for the shortness we wil
skip from the arguments:n(k8,t)⇒n(k8)#. The collision
term for GKE is very similar to that for the KE: it is propor
tional to the square of the amplitude of three wave inter
tionsV(k,k1 ,k2), bilinear inn(k8) and actually contains one
three-dimensional integration
Stk~$n~k8!%!5E dk1dk2

~2p!3 Gk12H d~k2k12k2!
1

2

uV~k,k1 ,k2!u2†n~k1!n~k2!2n~k!@n~k1!1n~k2!#‡

@v~k!2v~k1!2v~k2!#21Gk12
2

1d~k1k12k2!
uV~k2 ,k1 ,k!u2@n~k2!@n~k1!1n~k!#2n~k!n~k1!#

@v~k!1v~k1!2v0~k2!#21Gk12
2 J . ~8!
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This collision term differs from that of the KE in the finit
width Gkk1k2

of the resonances~1!:

Gkk1k2
5g~k!1g~k1!1g~k2!, ~9!

where g(k) is the damping of monochromatic wave wi
givenk. This allows interaction of waves from different, b
neighboring rays. We will see that for small nonlineari
e2!1 the characteristic angle of interaction is small:Duk
!p. This helps us to significantly simplify the collision in
tegral.

The paper is written as follows. In Sec. II we simplify th
collision term of the GKE by using the differential in ang
approximation. Observe from Eqs.~22!, ~29!, and~30! below
that the collision termStk in the differential approximation
has just one-dimensionalk integration along the ray with
direction ofk and operators of differentiation in two orthogo
nal directions. Note, that Eq.~30! written for distributions
n(k) with characteristic angle width much larger than t
interaction angle. This equation has an isotropic solut
n0(k)}k29/2 which coincides with the solution~4! of the
KE.

In Sec. III we linearize differential form of the GKE as
suming that the deviationn1(k) of the distributionn(k) from
isotropic solutionn0(k) is small and expand

n1~k![n~k,cosu!, cosu5k•n/k

into series of Legendre polynomialsPl (cosu),

n1~k,cosu!5 (
l 51

`

f l ~k!Pl ~cosu!. ~10!

After that our problem foliates into set of decoupled equ
tions for the Legendre polynomial with a given orderl . In
n

-

such a way we reduce the dimensionality of the problem
dimension one. Now the unknown functionf l (k) depends
only on one variablek and the corresponding collision term
involve only one-dimensionalk integration. Our observation
is that the equations for differentPl involve only one com-
bination of the parameters, namely,e2l (l 11). In Sec. III C
we found scale-invariant solutions of these equations;

f l ~k!}
1

kxl
, xl 561

ln@e2l ~ l 11!B#

ln~k* L !
, ~11!

which are valid for the region of parameters where 5,xl

,6. In Eq.~11! B is some number of order 1,L is outer scale
of turbulence andk* is the wave vector for whichg(k* ) is
about the smallest frequency of waves in the system.c/L.
Note that the isotropic solution~4! n0(k)}k29/2 and there-
fore whenkL increases the ratiof l (k)/n0(k) decreases a
least as 1/AkL. It means that in a cascade of energy trans
from anisotropic region of pumping down to the depth of t
inertial interval energy tends to diffuse between all the ra
and asymptotically, in the limitk→` acoustic turbulence
become fully isotropical. This phenomenon of isotropizati
of non-dispersive acoustic turbulence contrasts with s
focusing of weakly dispersive acoustic turbulence discove
in Ref. @2#, and see Eqs.~3!, ~5!, ~6!. Note also that for
nondispersive waves the rate of isotropization, i.e., the
of decreasing the ratiof l (k)/n0(k), depends only on the
combinatione2l (l 11) and increases both withe2 and l .

In Sec. IV we found nonscale invariant solution of th
linearized equations forf l (kL) which depends on som
characteristic lengthL:

f l ~kL!;AkL expF2
1

2
Ae2l ~ l 11!C~kL!2G . ~12!
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HereC is some constant of order unity. Solution~12! is valid
for kL.1, the value ofL has to be found from a matchin
of this solution with a solution for smallerk. Again, the rate
of isotropization depends only on the combinatione2l (l
11) and increases both withe2 and l .

Note that the choice between two found solutions is
delicate issue and depends on the various parameters o
problem:e2 andl (l 11) separately, on the value of unde
ground dispersion of the waves, etc. We do not think tha
is reasonable to study this question in general, without re
ring to a specific physical realization of the acoustic turb
lence.

The main qualitative message of this paper is that in s
of anisotropic pumping at large scalesL acoustic turbulence
became to be more and more isotropic with increasing o
wave vector. The rate of isotropization increases with
creasing the level of nonlinearitye2 and depends on the cha
acteristic angle of the distributionDu.p/l as 1/(Du)2.

II. DIFFERENTIAL APPROXIMATION OF THE
GENERALIZED KINETIC EQUATION

Our starting point is the generalized kinetic equatio
GKE ~7!, ~8! which describes the interaction of neighborin
rays due to the finite width of the three-wave resonance~9!,
determined by the damping increment of an individual wa
with givenk,l(k). The value ofg(k) was calculated in Ref
@4#:

g~k!5nk2, n.
A2N

4pc
, ~13!

wheren is the effective viscosity,N is the total number of the
waves in the system

N5E
1/L

`

n~q!q2dq, ~14!

andA.Ac/r characterizes the three-wave interaction am
tude

V~k,k1 ,k2!5AAkk1k2. ~15!

Here we accounted that the interaction is dominant by
interaction of almost collinear wave vectors and neglec
the angular dependence ofV(k,k1 ,k2).

Integrating Eq.~8! with the help of thed functions, one
has

Stk„$n~k8!%…5
A2k

~2p!3 F1

2 E dk1k1~k2k1!
N2G2

V2
2 1G2

2

1E dk1k1~k1k1!
N1G1

V1
2 1G1

2 G . ~16!

Here we have used the short-hand notations

G65n@k21k1
21uk6k1u2#,

N65n~k6k1!@n~k1!6n~k!#2n~k!n~k1!, ~17!

V65c~k6k12uk6k1u!.
a
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Under the above assumption of dominance of the collin
interaction one may takek1ik in G6 to get

G652n~k21k1
26kk1!. ~18!

However, we cannot use the same approximation in
equations forV6 andN6 . To understand this let us have
look at the angular integrals in Eq.~16! at given value ofk1 .
It is clear that the main contribution to the integrals com
from the region whereuV6u varies from 0 to a value of orde
g(k). Within this regionG6 is constant~18! with accuracy
of order g(k)/ck;e2. Similar considerations show that w
have to account a variation ofN6 within the region of an-
gular integration in Eq.~16!.

To evaluate the integrals in Eq.~16! one has to establish
the relations between different wave vectors appearing in
equation. Letn be some physically unique direction and a
sume for simplicity an axial symmetry aroundn. The vectors
k andk1 are almost collinear with a small angled between
them and arbitrary oriented. Then we introduce a Cartes
coordinate system with the axisz alongk ~Fig. 1!.

Given the geometry, we now derive a differential appro
mation for the anisotropic GKE. To this end, consider E
~17! and expandV6 andN6 in d. Clearly,

V6.d2V69 , V69 [6
ckk1

2~k6k1!
, ~19!

whereasN6 may be written as

N65N6
~0!1N6

~1!1N6
~2! . ~20!

Here

N6
~0!5nk6q~nq6nk!2nknq , ~21!

with q[kk1 /k. Terms withN6
(1)}d cosu or d sin u and dis-

appear after integration overf, while N6
(2)5d2N69 . After

~free! integration overf, N69 reads

FIG. 1. The coordinate system used in calculation of the in
grals in Eq.~7!. Vector n denotes the physically unique direction
The axisz is alongk, the axisx is in the plane~k,n!. The angles
between vectorn and vectorsk and k1 are denoted byu and u1 ,
respectively.d is the small angle betweenk andk1 . The azimuthal
angle ofk1 is denoted byf.
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N69 5
1

4
@~nq6nk!¹'

2 nk6k1
1~nk6q2nk!¹'

2 nk1

62~¹'nk1
!•~¹'nk6k1

!#, ~22!

where

¹'[sinu
]

] cosu1
~23!

andu1 is the angle between vectorsk1 andn; derivatives are
taken atu15u.

Note, that all thed dependence of the integrand in E
~16! is hidden inV6 andN6 and therefore the integrals ma
be factorized. Using smallness ofd we write explicitly dk1
5pq2dq dd2 and consider the integrals overd2:

I 65pE dd2
N6G6

V6
2 1G6

2 5I 6
~0!1I 6

~2! , ~24!

where

I 6
~0!5pN6

~0!G6E
0

` dd2

d4~V69 !21G6
2 5

p2

2

N6
~0!

V69
, ~25!

I 6
~2!5pN69 G6E

0

b d2dd2

d4~V69 !21G6
2 5

p

2

N69 G6L6

~V69 !2 . ~26!

Here the upper limit in the second integralb is determined by
the next terms of expansion of frequency ind, generally
speakingb5O(1). In Eq. ~26! L6. ln(V69 /G6). Finally,
substituting Eqs.~24!–~26! into Eq. ~16! we get the aniso-
tropic GKE ~7! with the collision term in the differentia
approximation

Stk„$n~k8!%…5Stk,0„$n~k8!%…1Stk,2„$n~k8!%…. ~27!

Here Stk,0„$n(k8)%… originates fromN6
(0) and coincides with

the collision term of KE@1#:

Stk,0„$n~k8!%…5
A2

8pc F1

2 E0

k

dq q2~k2q!2N2
~0!

1E
0

`

dq q2~k1q!2N1
~0!G . ~28!

Term Stk,2„$n(k8)%… is responsible for the angular evolutio
@and disappears for the isotropic distributions ofn(k), as
expected#:

Stk,2„$n~k8!%…5
A2

8p2c F1

2 E0

k

dq q2~k2q!2
G2L2

V29
N29

1E
0

`

dq q2~k1q!2
G1L1

V19
N19 G . ~29!

III. WEAKLY ANISOTROPIC SPECTRA OF ACOUSTIC
TURBULENCE

In this section we will find and analyze a steady st
weakly anisotropic solution to the anisotropic GKE~7! with
e

the collision term~28!, ~29! in the differential approximation

Stk,0„$n~k8!%…1Stk,2~$n~k8!%…50. ~30!

A. Linearization of the basic equation

Due to the weak anisotropy of the problem, we are se
ing a solution in the form

n~k!5n~k,cosu!5n0~k!1n1~k,cosu!. ~31!

Heren0(k) is given by Eq.~4! and is a steady state solutio
of the isotropic problem

Stk,0„$n0~k8!%…50. ~32!

The anisotropic correction is assumed to be sm
n1(k,cosu)!n0(k). Then we substitute Eqs.~31!–~30! and
linearize Eq.~30! by keeping only terms proportional ton1
and discarding terms with higher orders of the correction.
this end, we expand the anisotropic correctionn1(k,cosu) in
a series~10! in which Pl (cosu) is the Legendre polynomia
of the orderm, satisfying the equation

@¹'
2 1l ~ l 11!#Pl @cos~u!#50. ~33!

Consider first Stk,0„$n(k8)%… given by Eq.~28!. According
to Eq. ~32! n0(k) is the steady state solution of the GKE
Therefore the terms proportional ton0(k) have to disappear
The result~linear in n1! is given by

Stk,0„$n~k8!%…5 (
l 51

`

Pl ~cosu!F0~k, f l !, ~34!

where

F0~k, f l !

5
A2

4pc F1

2 E0

k

dq q2~k2q!2$ f l ~k2q!@n0~q!2n0~k!#

1n0~k2q!@ f l ~q!2 f l ~k!#2 f l ~k!n0~q!2n0~k! f l ~q!%

1E
0

`

dq q2~k1q!2$ f l ~k1q!

3@n0~q!1n0~k!#1n0~k1q!@ f l ~q!1 f l ~k!#

2 f l ~k!n0~q!2n0~k! f l ~q!%G . ~35!

To linearize Stk,2„$n(k8)%… we substitute in Eq.~29! the
distribution n(k) defined by Eqs.~4!, ~10!, ~31! and using
Eq. ~33! to get

Stk,2~$n~k8!%!52 (
l 51

`

l ~ l 11!Pl @cos~u!#F2~k, f l !,

~36!

where
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F2~k, f l !5
A2

8p2c S 1

2 E0

k

dq q2~k2q!2
G2L2

V29
N29

~ l !

1E
0

`

dq q2~k1q!2
G1L1

V19
N19

~ l !D ~37!

and

N69
~ l !5

1

4
$@n0~q!6n0~k!# f l ~k6q!

1@n0~k6q!2n0~k!# f l ~q!%.

The steady state weakly anisotropic GKE therefore read

(
l 51

`

@F0~k, f l !2l ~ l 11!F2~k, f l !#50. ~38!

The particular solution of this equation which may satis
any boundary conditions may be found only if each term
the sum vanishes, i.e.,

F0~k, f l !5l ~ l 11!F2~k, f l !. ~39!

This is the basic equation for our study.

B. Evaluation of the collision integral

In order to solve Eq.~39! in the leading order on the clas
of scale invariant functions

f l ~q!5
f l

qx , f l is a prefactor, ~40!

one has to evaluate the integrals inF0 andF2 and to find a
leading contribution in the various regions of the expone
x. This is done in the Appendix, here we only will prese
and discuss the results.

As we show in Appendix 1, the leading contributions
F0 ~35! may be written as

F0'
A2n0~k!f l ~2x29!

2pcu~x24!~x25!u H Lx25, x.5

k52x, 4,x,5,

kk
*
x24, x,4.

~41!

For x.3 two integrals in Eq.~35! diverge in the IR regime
~for q→0 and for q→k!. However, the leading divergen
terms are canceled and the region of IR divergence beco
x.4. Moreover, first subleading terms also canceled and
region of IR divergence in Eq.~35! is x.5. In this regime
one has to cut off the integral at outer scaleL, see first line in
Eq. ~41!. For 4,x,5 the sum of integrals in Eq.~35! con-
verges both in IR and ultraviolet~i.e., forq@k! regimes. The
corresponding evaluation is given by the second line in
~41!. Finally, for x,4 the value ofF0 is dominated by the
ultraviolet ~UV! divergent contribution to the second integr
in Eq. ~35! and have to be regularized by some UV cuto
k* . A corresponding evaluation is given by the last line
Eq. ~41!. The origin ofk* is different for different physical
systems and will not be discussed here. Observe from
s
t

es
al

.

q.

~41! that ~i! F0 has definite sign,~ii ! F050 at x59/2, con-
sistent with@1#, ~iii ! prefactor inF0 diverges forx→5 and
x→4.

In Appendix 2 we evaluated the leading contributions
integrals in Eq.~37! for F2 for different values ofx. The
answers may be summarized as follows:

F2~k, f l !'
A2nLn0~k!f l

2p2c2

35
k3Lx23 ~ for 6,x!,

k3Lx231k
*
62x for

11

2
,x,6,

2~kL!5/2k62x1k
*
62x for x,

11

2
.

~42!

In the IR regime we have two different contributions toF2 ,
the first is divergent for anyx, the second is divergent fo
x.3. These contributions coincide atx511/2. One may rec-
ognize the contributions from the IR regimes by the prese
of L in the corresponding terms. In the integral~37! for F2
we have UV divergence forx,6, in this region the upper
cutoff again isk* and corresponding terms involve this p
rameter. Note that in contrast to evaluations~41! we do not
have here a window of locality where the collision integra
converge.

C. Solution of the homogeneous equation

Our goal now is to find the solution of the homogeneo
Eq. ~39!. We seek the solution in the scale invariant sect
Denote the scaling exponents ofF0(k, f l ) andF2(k, f l ) as
y0 andy2 :

F0~k, f l !}f l k2y0, F2~k, f l !}f l k2y2. ~43!

The x dependences of these exponents are determined
Eqs.~41!, ~42! and shown in Fig. 2.

F0 converge for 4,x,5 and diverge for other values o
x ~in IR for 5,x and in UV for x,4!. F2 never converge
with different rate of divergence in IR and UV limits~two
branches, see Fig. 2!. The ratio between IR and UV diver

FIG. 2. Scaling exponentsy0 ~solid line! andy2 ~dashed lines!
for different values ofx. Arrows show the directions of divergenc
for the corresponding integrals. IR and UV represent the infra
and ultraviolet limits, locality denotes the region of convergence
F0 .
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gent terms inF2 depends on the wave vectork, therefore,
generally speaking we have to account for both IR and
terms.

Fortunately, the exponentsy05y259/2 coincide in the
window 5,x,6, meaning that at least thek dependence o
F0(k, f l ) andF2(k, f l ) is the same. Next promising obse
vation is the coincidence of signs: both function are positi
It means that we have a chance to satisfy Eq.~39! by a
proper choice of the exponentx. Indeed, according to Eqs
~41!, ~42!, Eq. ~39! for these values ofx becomes

Lx255B8~x25!l ~ l 11!
nk

*
6-x

c
, ~44!

where B8 is some positive,l independent, dimensionles
factor @we believe ofO(1)# which accumulated all unknown
factors in our estimates.

Let us estimate effective viscosityn. Substituting isotro-
pic solution~4! in Eq. ~14! one getsN.aL3/2. Now from Eq.
~13! one has

n.aL3/2/r. ~45!

Next one has to relate the dimensional factora with the
dimensionless amplitude of wavese. To do this we evaluate
the total energy of the acoustic waves

Eac5E d3k v~k!n0~k!

.4pcaE
1/L

` dk

k3/2

.caAL. ~46!

We definee2 as the the ratio of the total energy in th
acoustic-wave systemEac to the total kinetic energy of the
mediaEkin which is aboutrc2. Parametere may be treated
as the ratio of the amplitude of velocity in acoustic waves
the mean square velocity in the media caused by its kin
energy in the thermodynamic equilibrium.

Now we havee2.aAL/rc which together with Eq.~45!
gives

n.e2cL. ~47!

Using this evaluation in Eq.~44! one has

Lx265B9e2l ~ l 11!k
*
62x , ~48!

whereB9 absorb one more unknown factor from the eva
ation of n. Therefore the solution is achieved forx5x0,l ,
where

x0,l 561
ln@e2l ~ l 11!B9#

ln~k* L !
. ~49!

These exponents give thek dependence of the solution~39!
in the depth of the inertial range. However, the functionsf l

remain unknown. To find them one has to match the iner
range solution to the pumping at the IR boundaryk
51/L).
.

o
ic

-

l

D. Effect of inhomogeneous terms

Sometimes the inhomogeneous terms in the KE cause
ditional solutions which may play important role in the ev
lution of spectra ink. Consider first the origin of the inho
mogeneous terms. Linearizing Eq.~34! we have concluded
thatn0

2 contribution to Stk,050 is zero. This is true only if the
IR limit of the integral is indeed zero, which is not the cas
In the energy containing interval 0,k,L21 we have a non-
universal behavior ofn(k) which has to be accounted. A
simple way to do this is first to evaluate the contribution
this region as

Stk,0,inhom„$n~k8!} ….
A2n0~k!

2pcAL
nS k

kLD . ~50!

Note that in this regionn(k) is not isotropic and thus
Stk,0,inhom„$n(k8)%… must depend on the direction ofk. Ex-
panding this dependence into the spherical harmonics~in our
case of the axial symmetry of the problem into the Legen
polynomials! we have an inhomogeneous contribution to E
~39!:

F inhom~k,n0,l !'
A2n0~k!n0,l

2pcAL
}kz, ~51!

where nonuniversal numbersn0,l may be related tof l via
‘‘boundary conditions’’ atk'1/L:

n0,l 'Lx29/2f l . ~52!

An important observation is that the scaling exponentz of
F inhom(k,n0,l ) in Eq. ~51! is independent ofx @because this
term is independent off l (k) altogether#. Moreover,z59/2,
which is exactly the same as exponentsy0 and y2 of the
homogeneous part of the GKEF0 andF2 . It means that for
any k one has to account the contribution ofF inhom(k,n0,l )
in the balance equation~39!. Repeating the same calculation
as in deriving Eq.~44! with the help of Eqs.~39!, ~41!, and
~42! and accounting now evaluations~51!, ~52! we are ap-
proaching again Eq.~44! with additional contribution to the
factor B9; their sum may be denoted asB. Physically it
means that resonant~i.e., with the same scaling exponen!
inhomogeneous term has shifted the exponentsxl relative to
their ‘‘homogeneous values’’x0,l ~49!. By replacing the un-
known constantsB9⇒B we obtained from Eq.~49! final
equation~11! for the scaling exponents ofxl .

IV. NON-SCALE-INVARIANT SOLUTIONS

In the previous section we found all scale-invariant so
tions and observe that they have finite region of applicabi
for which their scaling exponents 5,xl ,6. Outside of this
region we have to look for non-scale-invariant solutio
which contain explicitly a characteristic length scaleL
which will be chosen later. To do that we have to choo
f l (kL) in some reasonable form, for example,
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f l ~k!5a0,l kxF11
a2,l

k2 1
a4,l

k4 ...Gexp@2bl ky#,

k[kL>1, ~53!

wherex, y, ai ,l , andbl are some unknown numbers. Obv
ously there is no UV divergences inF0 and F2 for such
choice of f l . Furthermore, since in leading order
limq→0f l 5a0 there is no IR divergence inF0 andF2 asso-
ciated with f l , so that the IR behavior of theF0 andF2 is
dominated byn0(qIR), qIR;1/L.

Then in expression~35! we keep only the terms propor
tional to n0(q) andn0(k2q):
e
o

F0~k, f l !.
A2

4pc F1

2 EqIR

k

dq q2~k2q!2$ f l ~k2q!n0~q!

1n0~k2q!@ f l ~q!2 f l ~k!#2 f l ~k!n0~q!%

1E
qIR

dq q2~k1q!2$ f l ~k1q!n0~q!

2 f l ~k!n0~q!%G . ~54!

Now let us change variables in the first integralq→k2q.
Then we can evaluate integrals atq5qIR only:
F0~k, f l !.
A2

4pc F1

2 EqIR

dq q2~k2q!2$ f l ~k2q!n0~q!1n0~k2q!@ f l ~q!2 f l ~k!#2 f l ~k!n0~q!1 f l ~q!n0~k2q!1n0~q!

3@ f l ~k2q!2 f l ~k!#2 f l ~k2q!n0~k2q!%1E
qIR

dq q2~k1q!2$ f l ~k1q!n0~q!2 f l ~k!n0~q!%G
.

A2

4pc F1

2 EqIR

dq q2k22n0~q!@ f l ~k1q!22 f l ~k!1 f l ~k2q!#G
.

A2

8pc

k2]2f l ~k!

]k2 E
qIR

dq q4n0~q!. ~55!
of

n.
ling

e

its

:
d

The second derivative off l is the result of the usual doubl
cancellation of the IR divergence in the isotropical part
KE.

Now we have to evaluateF2 at q!k for the choice off l

given by Eq.~53!. Let us first evaluateN29 for q!k:

N29
~ l !.

1

4
$n0~q! f l ~k2q!1@n0~k2q!2n0~k!# f l ~q!%

~56!

or

N29
~ l !.

1

4
n0~q! f l ~k!, q!k. ~57!

Similarly,

N19
~ l !.

1

4
n0~q! f l ~k!, q!k. ~58!

Now use Eq.~A6! to estimateF2 :

F2~k, f l !.
A2

16p2c EqIR

dq q2k2
4nk2L̃

cq
n0~q! f l ~k!

.
A2

16p2c
qIR

2 k44e2Ln0~qIR! f l ~k!, qIR.1/L,

~59!
f
where we used estimation~47! for effective viscosityn. Ac-
tually we have not calculated accurately theq→k contribu-
tion in F2 . Note, however, that this contribution would be
lower ~in q! order, because limq→k.2@ck2/2(k2q)#.

Now Eq. ~39! acquires the form~introducing dimension-
less constantC, generally speaking of the order of unity!

qIR
5 k2n0~qIR!

d2f l ~k!

dk2 5Ce2Ll ~ l 11!qIR
2 k4n0~qIR! f l ~k!.

~60!

Note thatn0(qIR) cancels from both sides of this equatio
Further notice that both terms are of positive sign. Cance
qIR and k from both sides and substitutingk5k/L with
qIR.1/L we get

d2f l ~k!

dk2 .Cl ~ l 11!e2k2f l ~k!, k[kL, ~61!

where we choseL.L. This equation may be solved in th
Bessel functions~of order 1/4 of imaginary argument!. For
our goals, however, it would be enough to present only
asymptotic form fork@1:

f l ~k!5AkF11
a2,m

k2 1¯GexpS 2
e

2
ACl ~ l 11!k2D ,

~62!

where coefficientsa2,l , a4,l , etc., may be found iteratively
a2,l 53/ACl (l 11)e2,..., butthese terms really are beyon
the accuracy of Eq.~61! itself. Solution~62! shows that an-
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isotropic corrections decay exponentially, the rate of de
increases withe2 and l (l 11).

V. SUMMARY

Let us summarize the logic of this paper. We start fro
generalized kinetic equation~GKE! ~8!. The conditions of
time-space resonances~1! dictates almost collinear propaga
tion, so we expand Eq.~8! in the transverse direction, an
arrive to the differential approximation for the collision ter
in GKE ~27! with Eqs. ~28! and ~29!. We assumeweakan-
isotropy with anisotropic correction in the factorized for
~31!. After substitution~31! in Eqs.~27!, ~28!, ~29!, we lin-
earizeresulting three-dimensional equations~which are dif-
ferential in angles and integral along the rays!. Expansion of
these equations in series in Legendre polynomialsPl foli-
ates the three-dimensional problem in decoupled sets on
dimensional ones, for eachl separately. We have found th
power-law solutions of these equations~11! and the expo-
nential solutions~12! which are governed by the same p
rametere2l (l 11). These solutions describe the pheno
enon of isotropization of nondispersive acoustic turbule
in the cascade process of energy transfer from anisotr
region of pumping down to the smaller and smaller sca
(k→`). In the limit k→` the statistics of acoustic turbu
lence approaches isotropical flux equilibrium. The main
sult of the article is that the spectra of acoustic turbule
tend to become more isotropic.
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APPENDIX: ANALYSIS OF CONVERGES OF INTEGRALS
IN THE COLLISION TERMS

1. F0„k,f l … behavior

a. IR regime

In Eq. ~35! one has three different regions dangerous
IR divergence. These are the regionsq→0 andq→k in the
first integral andq→0 in the second one. The first integr
1/2*0

k
¯ may be split into two integrals 1/2*0

k/2
¯ and

1/2*k/2
k
¯ . In the second one we may change dummy va

ableq→q85(k2q) and then to redenoteq8→q. After that
one sees that the integral 1/2*k/2

k
¯ equal to 1/2*0

k/2
¯ and

therefore the first integral in Eq.~35!, 1/2*0
k
¯ , may be re-

written as*0
k/2 ... . This integral in the regionq!k together

with the second integral in Eq.~35! may be written as

F0~k, f l !'
A2

4pc E0

k/2

dq q2~k2q!2f l ~q!

3@n0~k2q!2n0~q!#

1~k1q!2f l ~q!@n0~k1q!2n~k!#. ~A1!
y
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Substitutingf l (q) from Eq. ~40! one observes here a usu
double cancellation of the leading and the first sublead
terms in the IR regime. Therefore integral~A1! may be
evaluated~up to a factor! as follows:

F0~k, f l !'
A2n0~k!

4pc E
0

k/2

dq q4f l ~q!. ~A2!

Now one sees that the integral~A2! converges forx,5 and
diverges forx.5. In the latter case we take the outer scaleL
as an IR cutoff. Then it is easy to see thatF0 may be evalu-
ated in different regions ofx as

F0'
A2n0~k!f l

2pc
3H k52x/~52x! ~ for x,5!,

ln~kL! ~at x55!,

Lx25/~x2r ! ~ for 5,x!.
~A3!

Note, that in this limit and forx close to 5,F0.0.

b. UV regime

Next we analyze the regionq@k, i.e., the UV regime in
the second integral in Eq.~35!. Here the most dangerou
terms reduce to

F0~k, f l !'
A2n0~k!

4pc E
k

k
* dq q4@ f l ~k1q!2 f l ~q!#.

~A4!

There is a cancellation of the leading contribution in t
regionq@k. Therefore this integral converges atx.4. In a
compact form the UV evaluation ofF0 may be written as

F0'2
A2kn0~k!f l

2pcux24u
3H k42x, x.4

k
*
42x , x,4.

~A5!

Here k* is an UV cutoff of the integral which may hav
different nature for different physical situations and will n
be further clarified here. Note, that in the UV regime forx
close to 4,F0,0. It is known also, thatF050 for x59/2,
the scaling index of the isotropic solution of the KE. Now w
can join Eqs.~A3! and ~A5! and write evaluation of the
leading contribution toF050 in all regions ofx in the form
~41!.

2. F2„k,f l … behavior

a. IR regime

Unlike F0(k, f l ), there is no double cancellation of th
IR contribution~i.e., in the limitsq→0 andq→k! in the sum
of the integrals~37! for F2(k, f l ). The reason is thatV69 is
not invariant underq→k2q transformation. Now, in the IR
regionq!k one has the following simplifications:

G652n~k21k1
26kk1!'2nk2,

V6.d2V69 , V69 [6
ckk1

2~k6k1!
.6cq/2,
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L65 lnS V69

G6
D . lnS cq

4nk2D[L̃. ~A6!

Substituting these equations into Eq.~37! one gets in the IR
region

F2~k, f l !.
nk4A2L̃
2p2c2 E

0

k

dq qF1

2
N29

~ l !2N19
~ l !G . ~A7!

The most dangerous terms in the combinationsN69
(l ) are

N69
~ l !.

1

4
$n0~q! f l ~k6q!1@n0~k6q!2n0~k!# f l ~q!%.

~A8!

Together with Eq.~32! these yield

N69
~ l !.

1

4 H n0~q! f l~k!7
9q

2k
n0~k! f l ~q!J . ~A9!

Then in the IR limitF2 reads

F2~k, f l !.
nk4A2L̃

f2c2 E
0

k

dq q

3F2n0~q! f l ~k!1
q

k
n0~k! f l ~q!G ,

~A10!

where we did not care about the numerical factor, just c
rying the signs. Sincen0(k)}k29/2 the n0(q) f l (k) term al-
ways diverges; the corresponding contribution to the integ
behaves as (kL)5/2k2n0(k) f l (k). The second term will di-
verge if f l (q)5f l /qx with x,3. Symbolically, its contri-
butions to the integral are

E
0
¯;

n0~k!f l

kux23u H k32x ~ for x,3!,

Lx23 ~ for x.3!.
~A11!

Observe that forx.11/2 the contribution of the second ter
in Eq. ~A10! dominates the contribution of the first one. F
nally, the IR contributions toF2(k, f l ) are summarized as

F2~k, f l !'
nk3A2Ln0~k!f l

2p2c2

3H 2~kL!5/2k32x ~ for x,11/2!,

Lx23 ~ for x.11/2!
.

~A12!
r-

al

b. UV-regime

Next we have to consider the UV regime of the integral
Eq. ~37!, i.e., the region of integration withq→kl @k. Here
we have the simplifications

G152n~k21k1
26kk1!.2nq2, ~A13!

V1.d2V69 , V6
IJ[6

ckk1

2~k6k1!
>

ck

2
,

L15 lnS V69

G6
D . lnS ck

4nq2D[L̂.

Now F2 becomes

F2~k, f l !5
A2

8p2c Ek

k
* dq q2~k1q!2

G1L1

V19
N19

~ l !

.
A2nL̃

2p2c2k Ek

k
* dq q6N19

~ l ! . ~A14!

Out of N19
(l ) the most divergent for UV term is

N19
~ l !.

1

4
$n0~k!@ f l ~k1q!2 f l ~q!#%

;2
xk

4q
n0~k! f l ~q!, ~A15!

where we used thatf l (q)}q2x and q@k. Now in the UV
regime theF2(k, f l ) term may be evaluated~up to a numeri-
cal factor! as

F2~k, f l !.2
A2nL̃n0~k!

2p2c2 E
k

k
* dq q5f l ~q!. ~A16!

This integral converges forx.6 and may be written as fol
lows:

F2~k, f l !;2
A2nL̃n0~k!f l

2p2c2ux26u
3 H k

*
62x for x,6,

k62x for x.6.
~A17!

Combining Eqs.~A17! and~A12!, one has after some mino
manipulations~neglecting factors of order 1, difference b
tweenL and L̂, etc.! Eq. ~42!.
,
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