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Anisotropic spectra of acoustic turbulence
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We found universal anizopropic spectra of acoustic turbulence with the linear dispersian(kgw ck
within the framework of generalized kinetic equation which takes into account the finite time of three-wave
interactions. This anisotropic spectra can assume both scale-invariant and non-scale-invariant form. The im-
plications for the evolution of the acoustic turbulence with nonisotropic pumping are discussed. The main
result of the article is that the spectra of acoustic turbulence tend to become more isotropic.

PACS numbd(s): 47.27—i

[. INTRODUCTION AND GENERAL DISCUSSION tistics and requires weakness of the interactér1 to en-
sure the closeness the wave statistics to Gaussianity. This
Wave turbulence, which describes the behavior of a spahappens in some physical situations, but not for acoustic
tially homogeneous field of random dispersive waves, hasvaves. The physical reason is the above described foliation:
led to spectacular success in our understanding of spectrfdr each particulanoninteracting ray of waves one may
energy transfer processes in plasmas, oceans, and planet@gss into comovingwith the sound velocityc) reference
atmospherefl]. In the case of small level of nonlinearigy  system in which all the waves are in the rest and therefore
(for example, for the surface waves this is the ratio of thetheir interaction time goes to infinity. Therefore for any
wave amplitudeh to the wavelength\,e=h/\), there is a small level of nonlinearity the waves have enough time for
consistent description of the weak wave turbulence in termghe finally large deviation of phases from the random Gauss-
of so calledkinetic equation(KE) which describes the en- ian distribution. This is exactly the reason why in one dimen-
ergy transfer due to interactions of thr@e some cases four  sional case one has a creation of shock wawdsch may be

waves with the conservation of energy and momenta described by the Burgers equatidior any (smal) level of
nonlinearity. If really acoustic waves tend to focus, the ap-
w(K)* (k) —w(ky) =0, k*k;—k,=0. (1) proximation of KE is problematic even qualitatively. In this

per we will show that this is not the case and therefore the

proximation of KE may serve at least as a starting point to

escribe nondispersive acoustic turbulence.

The answers on the first three questions for weakly dis-

persive acoustic waves was done a long ago by one of us

K[| Kq| K, 2) (V.L.) and G. Falkovict?2]. We showed that weakly disper-
sive waves, say with the dispersion law

and therefore the interacting acoustic waves are foliated into

noninteracting rays of waves propagating in different direc-

tions. Immediately a few Important questions arise. really tends to focus. Namely, the isotropic solution of the

(1) What are the mechanisms responsible for an energy e
redistribution between different rays?

(2) How does the energy become shared between neigh-  n (k)=ak 92 (a is a dimensional constant (4)
boring rays?

(3) Does the energy tend to diffuse away from the rayfound by Zakharov and Sagdeev in 19[A] is unstable in
with maximum energy or can it focus onto that ray? In thethe sense that the anisotropic solutions of the KE found in
latter case, one might argue that shock formation may agaiRef. [2]:
become the relevant process especially if the energy should

These equations on a classical language are a condition gg
time-space resonance. Equatiofl§ show that acoustic

waves are special: interacting waves have to have parallg
wave vectors

w(k)ocktd  5<1, ®)

condense on rays with very different directions. (kLy2I+pi2 k-n]'[  k-n]P

(4) Is the approximation of the KE adequate for a descrip- Mip(K) = K972 kK K (5)
tion of acoustic turbulence even in the case of small nonlin-
earity? increases withk from the pumping scale [/ toward the

The positive answer on the last question is problemdfjc  depth of the inertial intervakL>1 faster than the isotropic
Approximation of KE is based on the randomization of one(4). In Eq.(5) n is the unit vector which is determined by
phases of noninteracting waves leading to the Gaussian stanisotropy of the pumping. Observe that the ratio

Np(K)

*Electronic address: Ivovy@rpi.edu no(Kk)

oc(kL)é(l+p)/2 (6)
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increases faster for more anisotropic sha@ger!| andp) netic equation (GKE) for the “occupation numbers of
and for more dispersive waves with biggérin this sense waves” n(k,t) has the form

the nondispersive waves with=0,0(k)xk are marginal,

n,p(k)/no(k)ock°=const and any angle distributior{k) is a an(k,t)

solution of the KE ats=0. Clearly this is a consequence of =St({n(k’,1)}), W)
the foliation described above. However, physical intuition at

tells us that there should be some mechanism of redistribut-

ing energy between neighboring rays even for fully nondis-where the collision term g{n(k’,t)}) is a functional of the
persive waves. Indeed, the fact that all interacting wave®ccupation numbens(k’,t)} with all wave vectork’ but at
have parallel wave vectors follows from the time-space resothe same moment of time{which for the shortness we will
nance conditiongl). These conditions are valid with some skip from the argumentsn(k’,t)=n(k’)]. The collision
accuracy which is determined by the life time of the wavesterm for GKE is very similar to that for the KE: it is propor-
and therefore neighboring rays can really interact. In outional to the square of the amplitude of three wave interac-
recent papef4] we generalized the KE for acoustic waves totionsV(k,k;,k5), bilinear inn(k’) and actually contains one
account the finite width of the resonances. Generalized kithree-dimensional integration

[ dhadk, 1 V(K Ky o) Pk k)~ n(I[n(ky) + (k) 1]
suinkon - | er”[ ) T = wk) - w(ka) P+ T2,

V(K ,kq k)| 2[n(kx)[N(ky) +n(k)]—n(k)n(ky)] ©
[w(K)+ w(ky) — wo(kx) 2 +T2, '

+ 8(k+ky—ky)

This collision term differs from that of the KE in the finite such a way we reduce the dimensionality of the problem to

width Uik, of the resonancedl): dimension one. Now the unknown functidn(k) depends
only on one variabld and the corresponding collision terms
Lk, = ¥(K) + y(kp) + v(Ka), (90 involve only one-dimensiond integration. Our observation

is that the equations for differefft, involve only one com-
where y(k) is the damping of monochromatic wave with bination of the parameters, nameéf/ (/4 1). In Sec. Il C
givenk. This allows interaction of waves from different, but we found scale-invariant solutions of these equations;
neighboring rays. We will see that for small nonlinearity,

€’<1 the characteristic angle of interaction is smallg, 1 In[€2/(/+1)B]
<. This helps us to significantly simplify the collision in- f (k)= W X + In(k, L) ' (11
tegral.

The paper is written as follows. In Sec. Il we simplify the \yhich are valid for the region of parameters where %
collision term of the GKE by using the differential in angle —g_|n Eq.(11) B is some number of order L,is outer scale
approximation. Observe from Eq22), (29), and(30) below  of tyrhulence and, is the wave vector for whichy(k, ) is
has just one-dimensiona integration along the ray with Note that the isotropic solutiofd) ny(k)<k 92 and there-
direction ofk and operators of differentiation in two orthogo- fore whenkL increases the ratid  (k)/no(k) decreases at

nal directions. Note, that Eq30) written for distributions o455t as kL. It means that in a cascade of energy transfer
n(k) with characteristic angle width much larger than theo, anisotropic region of pumping down to the depth of the
interaction angle. This equation has an isotropic solutiofetia| interval energy tends to diffuse between all the rays
No(K) k™™ which coincides with the solutioit) of the 504 asymptotically, in the limik—c acoustic turbulence
KE. . ) . . become fully isotropical. This phenomenon of isotropization
In Sec. Il we linearize differential form of the GKE as- ¢ hon.dispersive acoustic turbulence contrasts with self-
suming that the deviation, (k) of the distributiom(k) from  t4c;sing of weakly dispersive acoustic turbulence discovered

isotropic solutionng(k) is small and expand in Ref. [2], and see Egs(3), (5), (6). Note also that for
K)= L. nond|spers!ve waves .the rate of isotropization, i.e., the rate
ni(k)=n(k,cosf), coso=k-nk of decreasing the ratid (k)/ny(k), depends only on the
into series of Legendre polynomial®s, (cosé), combinatione?/(/+1) and increases both wi#f and /.

In Sec. IV we found nonscale invariant solution of the
linearized equations fof ,(kA) which depends on some
nl(k,COSG)Zzl f, (k)P (cos6). (100 characteristic lengtt:

o

After that our problem foliates into set of decoupled equa- _ _ E\/zi 2
tions for the Legendre polynomial with a given ordér In fo(kA)~ VA ex 2 Ve A/FDCKRA). (12
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HereC is some constant of order unity. Soluti¢i?) is valid
for kA>1, the value ofA has to be found from a matching
of this solution with a solution for smallde Again, the rate k
of isotropization depends only on the combinatiety’(/
+1) and increases both witéf and /.
Note that the choice between two found solutions is a
delicate issue and depends on the various parameters of the
problem:e? and/(/ + 1) separately, on the value of under-
ground dispersion of the waves, etc. We do not think that it
is reasonable to study this question in general, without refer- X
ring to a specific physical realization of the acoustic turbu-
lence.
The main qualitative message of this paper is that in spite v
of anisotropic pumping at large scalesacoustic turbulence _ _ ) _
became to be more and more isotropic with increasing of its F!G- 1. The coordinate system used in calculation of the inte-
wave vector. The rate of isotropization increases with in_grals in Eqg.(7). Vector n denotes the physically unique direction.

creasing the level of nonlinearie? and depends on the char- 1N€ @Xiszis alongk, the axisx is in the plane(kn). The angles

" S Y 2 between vecton and vectorsk andk; are denoted by and 6.,
acteristic angle of the distributiod g=//" as 1/4 6)". respectively.§ is the small angle betwednandk;. The azimuthal

angle ofk, is denoted by.

Il. DIFFERENTIAL APPROXIMATION OF THE

GENERALIZED KINETIC EQUATION Under the above assumption of dominance of the collinear

Our starting point is the generalized kinetic equation,interaction one may takle[|k in I'.. to get
GKE (7), (8) which describes the interaction of neighboring
rays due to the finite width of the three-wave resonai®e . =2v(k?+kixKky). (18
determined by the damping increment of an individual wave
with givenk,A (k). The value ofy(k) was calculated in Ref. However, we cannot use the same approximation in the

[4]: equations fo). andN. . To understand this let us have a
5 look at the angular integrals in E(L6) at given value ok; .
K= vk2, v~ AN (13) It is clear that the main contribution to the integrals comes
' 4mc’ from the region wher€) . | varies from 0 to a value of order

v(K). Within this regionI'.. is constant(18) with accuracy
wherev is the effective ViSCOS“M,\l is the total number of the of order »y(k)/ck~ €2. Similar considerations show that we

waves in the system have to account a variation &f. within the region of an-
. gular integration in Eq(16).
N:f n(q)g2da, (14) To evaluate the integrals in E¢L6) one has to establish
U the relations between different wave vectors appearing in the

. . _ _equation. Lein be some physically unique direction and as-
andA=/c/p characterizes the three-wave interaction ampli-sume for simplicity an axial symmetry aroundThe vectors

tude k andk; are almost collinear with a small ang&between
them and arbitrary oriented. Then we introduce a Cartesian
V(k.ky ko) =Avkkqko. (15 coordinate system with the axisalongk (Fig. 1).

Given the geometry, we now derive a differential approxi-
ation for the anisotropic GKE. To this end, consider Eq.
7) and expand). andN. in &. Clearly,

Here we accounted that the interaction is dominant by them
interaction of almost collinear wave vectors and neglecteq1
the angular dependence btk,k, ,k»).

Integrating Eq.(8) with the help of thes functions, one ckk
1

has —~ 520" "y~

, Qi §Qt1 Qt i2(kik1)' (19)
Skn(k)}H= (2w)§[§f dkiky(k=ky) 02412 whereasN.. may be written as
N.T. N.=NO+NP+N2. (20)
+ dklkl(k+ kl) m . (16) * * + +
. Here
Here we have used the short-hand notations

I = o[k 2+ k= ky 2], N = i o =)~ N (21

N. =n(k=k)[n(k) =n(k)]-nkn(ky),  (17)  with =Kk, /k. Terms withNec §cose or 5sin ¢ and dis-
appear after integration ovep, while N@=§°N’, . After
Q. =c(kxky—|k=kq]). (free) integration overg, N”. reads
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1 5 ) the collision term(28), (29) in the differential approximation
NZ =7 [(NgE N VN + (Mg MI VINK

St o{n(k") P+ Sk o({n(k")})=0. (30)
+2(V )+ (V iy )1, (22)
where A. Linearization of the basic equation
Due to the weak anisotropy of the problem, we are seek-
e d ing a solution in the form
VJ_ =siIn HW (23)

n(k) =n(k,cosf) =ngy(k)+n4(k,cosb). (31
and 6 is the angle between vectdkg andn; derivatives are
taken atf,= 6. Hereng(K) is given by Eq.(4) and is a steady state solution
Note, that all thed dependence of the integrand in Eq. of the isotropic problem
(16) is hidden in€) . andN.. and therefore the integrals may
be factorized. Using smallness éfwe write explicitly dk, St o({no(k")})=0. (32

= 1rq°dq dé? and consider the integrals ovéf:
The anisotropic correction is assumed to be small:

fd& TN @ (24) n,(k,cosf)<ny(k). Then we substitute Eq$31)—(30) and
QZ F2 linearize Eq.(30) by keeping only terms proportional o
and discarding terms with higher orders of the correction. To
where this end, we expand the anisotropic correctk,cosé) in
; 482 2 NO a serieq10) in whiph P/(cosa) is th_e Legendre polynomial
10— T*J _m _t’ 25) of the orderm, satisfying the equation
- “Jo 8%Q1)2+T2 2 Q)
[V2+/(/+1)]P,[cod #)]=0. (33
N 6°ds*  wNLT.L.
I =aNLl . o PO ZHTE 2 ()2 (26) Consider first Sto({n(k’)}) given by Eq.(28). According

to Eq. (32) ny(k) is the steady state solution of the GKE.
Here the upper limit in the second integbeis determined by ~ Therefore the terms proportional ig(k) have to disappear.
the next terms of expansion of frequency & generally ~ The result(linear inn,) is given by
speakingb=0(1). In Eq. (26) £.=In(Q%/T.). Finally,
substituting Eqs(24)—(26) into Eg. (16) we get the aniso- ,
tropic GKIg (7()1 with t&e Collisior? t(err; in t?‘le differential St o({n(k )})Z/Zl P, (cosf)Dy(k,f,), (34)
approximation

Sk(n(k")})=Sko({n(k)}+Sk({n(k)}). (27

Here Stq({n(k’)}) originates fromN'® and coincides with ~ Po(k.f,)
the collision term of KE1]:

o

where

2

A quq(k D (k=) No(a) —ng(K)]
St o{n(k")})= 8mc

> [Ldadn-ane ~ame
0
(k= Q)LT(@) = £,00] 1,09 ng(e) ~ (k) (@)}

* 27(0) e
+f0 dq ?(k+a)*NY } (28) +f0 dq oP(k+a)*{f (k+q)

Term St ({n(k’)}) is responsible for the angular evolution
[and disappears for the isotropic distributions mfk), as
expectedt

X[no(a) +no(k) J+no(k+a)[f,(a)+f, (k)]

—f,(Kno(a) —no(K)f (a)}|. (39
Si({n(k")})=

2 1 [k r.c.
52702 ), B F
0 - To linearize St,({n(k’)}) we substitute in Eq(29) the

o r.C, distribution n(k) defined by Eqgs(4), (10), (31) and using
+f dq o(k+a)*—7 (29  Eq.(33 to get
0 +
ll. WEAKLY ANISOTROPIC SPECTRA OF ACOUSTIC St({n(k")})=— > A(/+1)P,[coq 6)]P(k,f,),
TURBULENCE /=1

(36)
In this section we will find and analyze a steady state
weakly anisotropic solution to the anisotropic GKB with  where
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A% [1 (k | y Uv_: .
_ + 2L 2 n(/) L Ly mecozoos 92
®y(k,f,) m(zﬁ)dqq (k=0)" 57— N= Al / R
- K P SRS Breeeeeenee 712
* r.c UV Niocatiey oo
+f dg (k+ )57 N @) . R
0 Q+ :
2 : :
--------------- R R I NS BT
and 1 i .i2T IR
1 Piadl l 5 I
NZO=Z{[no(a) £ no(K)1f (k= q) 4 5 L6 x
+[ng(k=q) —nge(k) 1T ()} FIG. 2. Scaling exponentg, (solid line) andy, (dashed lines

for different values of. Arrows show the directions of divergence
The steady state weakly anisotropic GKE therefore reads for the corresponding integrals. IR and UV represent the infrared
and ultraviolet limits, locality denotes the region of convergence of
* D,.
/21 [Do(k,f )=/ (/+1)Dy(k,f,)]=0. (38
- (41) that(i) ®, has definite sign(ii) ®,=0 atx=9/2, con-
sistent with[1], (iii) prefactor ind diverges forx—5 and
X— 4.
In Appendix 2 we evaluated the leading contributions to
integrals in Eq.(37) for &, for different values ofx. The
answers may be summarized as follows:

The particular solution of this equation which may satisfy
any boundary conditions may be found only if each term in
the sum vanishes, i.e.,

Do(k,f )=/ (/+1)Py(k,f,). (39
2
This is the basic equation for our study. D,(k,f )~ %
' T°C
B. Evaluation of the collision integral K3LX2  (for 6<Xx),
In order to solve Eq(39) in the leading order on the class 4 3 L6ox 11
of scale invariant functions ] LTk for 5-<x<6,
11
f.(q)= % ¢, is a prefactor, (40) —(kL)®A5*4+ k8™ for X<

one has to evaluate the integralsdipg and®, and to find a (42)

leading contribution in the various regions of the exponent
X. This is done in the Appendix, here we only will presen
and discuss the results.

As we show in Appendix 1, the leading contributions to
d, (35 may be written as

In the IR regime we have two different contributionsdg,

Lihe first is divergent for any, the second is divergent for

x>3. These contributions coincideat 11/2. One may rec-

ognize the contributions from the IR regimes by the presence

of L in the corresponding terms. In the integ(al) for ®,

we have UV divergence fox<<6, in this region the upper

cutoff again isk, and corresponding terms involve this pa-

, 4<X<5, (41) rameter. Note that in contrast to evaluatigd4) we do not

kki“‘, X<4. have here a window of locality where the collision integrals
converge.

. LX™5, x>5
Ang(K) ¢, (2x—9) K5

0 2 mc[(x—4)(x—5)|

For x>3 two integrals in Eq(35) diverge in the IR regime
(for g—0 and forq—k). However, the leading divergent C. Solution of the homogeneous equation

terms are canceled and the region of IR divergence becomes oyr goal now is to find the solution of the homogeneous
x>4. Moreover, first subleading terms also canceled and reﬁq_ (39). We seek the solution in the scale invariant sector.

region of IR divergence in EG35) is x>5. In this regime  penote the scaling exponents &f(k,f,) and®,(k,f,) as
one has to cut off the integral at outer schjesee firstline in -y andy,: '

Eq. (41). For 4<x<5 the sum of integrals in Eq35) con-

verges both in IR and ultravioléte., forg>k) regimes. The Dok, f)oep kYo, Dy(k,f, )ecp kY2, (43
corresponding evaluation is given by the second line in Eq.

(41). Finally, for x<4 the value of® is dominated by the The x dependences of these exponents are determined by
ultraviolet(UV) divergent contribution to the second integral Egs.(41), (42) and shown in Fig. 2.

in Eq. (35 and have to be regularized by some UV cutoff @&, converge for 4x<5 and diverge for other values of

k, . A corresponding evaluation is given by the last line inx (in IR for 5<x and in UV forx<4). ®, never converge

Eq. (41). The origin ofk, is different for different physical with different rate of divergence in IR and UV limi{gwo
systems and will not be discussed here. Observe from Edpranches, see Fig.).2The ratio between IR and UV diver-
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gent terms ind, depends on the wave vectky therefore, D. Effect of inhomogeneous terms
generally speaking we have to account for both IR and UV Sometimes the inhomogeneous terms in the KE cause ad-
terms. ditional solutions which may play important role in the evo-

Fortunately, the exponentg=y,=9/2 coincide in the lution of spectra ink. Consider first the origin of the inho-
window 5<x< 6, meaning that at least thedependence of mogeneous terms. Linearizing E@4) we have concluded
Do(k,f,) andd,(k,f,) is the same. Next promising obser- thatn? contribution to Sto=0 is zero. This is true only if the
vation is the coincidence of signs: both function are positivelR limit of the integral is indeed zero, which is not the case.
It means that we have a chance to satisfy BBf) by a  In the energy containing intervakOk<L ~* we have a non-
proper choice of the exponenrt Indeed, according to Egs. universal behavior of(k) which has to be accounted. A
(41), (42), Eq. (39 for these values ok becomes simple way to do this is first to evaluate the contribution of

6o this region as
*

c

LX"5=B'(x=5)/(/+1) (44

A%ny(k) [ k

where B’ is some positive/ independent, dimensionless St 0,innon{N(K")} )= O(\/—) n(m) (50)

factor[we believe ofO(1)] which accumulated all unknown 2meyL
factors in our estimates.

Let us estimate effective viscosity Substituting isotro-

pic solution(4) in Eq. (14) one getdN=aL%2. Now from Eq. Note that in this regionn(k) is not isotropic and thus
(13) one has St 0,innonf{N(k")}) must depend on the direction &f Ex-

panding this dependence into the spherical harmdmiogur
v=aL%¥?p. (45) case of the axial symmetry of the problem into the Legendre
polynomials we have an inhomogeneous contribution to Eq.
Next one has to relate the dimensional factowith the  (39):
dimensionless amplitude of wavesTo do this we evaluate

the total energy of the acoustic waves )
ATno(K)no,

Dinpon( K, Ng )~ ————=—xK?, (51
Eac= f &k w(K)ng(k) 2me\L
4 = dk where nonuniversal numbers, , may be related tap, via
=4mCca =3 « e " N -
kK boundary conditions” atk~1/L:
= Ca\/E (46) nO,/% LX—9/2¢/ . (52)

We definee? as the the ratio of the total energy in the

acoustic-wave systerfi,. to the total kinetic energy of the <I> : o .
. e 2 inhom(K,No,~) in EQ. (51) is independent ok [because this

mediaEyn, which is aboutoc”. Parametee may be treated o independent df (k) altogethe}. Moreover,z=9/2,

as the ratio of the amplitude of velocity in acoustic waves to

the mean square velocity in the media caused by its kinetiﬁv Qr'gggljngzﬁgtga:? ;?ﬁg‘gg z)ﬁ]%oq?ey?? ?nneda)rlmzs tohf aihfir
energy in the thermodynamic equilibrium. 0 2:

2 . _ any k one has to account the contribution ®f,o(k,ng )
Now we havee”~ayL/pc which together with Eq(45) in the balance equatiai39). Repeating the same calculations

An important observation is that the scaling exponeif

gives as in deriving Eq(44) with the help of Eqs(39), (41), and
= e2clL. 47) (42) and accounting now evaluatioris1), (52) we are ap-
proaching again Eq44) with additional contribution to the
Using this evaluation in Eq44) one has factor B”; their sum may be denoted & Physically it
means that resonaifie., with the same scaling expongnt
LX 6=B"e?/(/+ 1)ki_x, (48) inhomogeneous term has shifted the expongptelative to

their “homogeneous valuesX, , (49). By replacing the un-
whereB” absorb one more unknown factor from the evalu-known constant8”"=B we obtained from Eq(49) final

ation of ». Therefore the solution is achieved fRE=Xx, equation(11) for the scaling exponents of, .
where
|n[62/(//+ 1)B"] IV. NON-SCALE-INVARIANT SOLUTIONS
Xo, =6+ In(k, L) (49) In the previous section we found all scale-invariant solu-

tions and observe that they have finite region of applicability
These exponents give thedependence of the solutidB9)  for which their scaling exponents<tx,<6. Outside of this
in the depth of the inertial range. However, the functigns region we have to look for non-scale-invariant solutions
remain unknown. To find them one has to match the inertialvhich contain explicitly a characteristic length scale
range solution to the pumping at the IR boundaly ( which will be chosen later. To do that we have to choose
=1/L). f (kA) in some reasonable form, for example,
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« Qay,y  Qyp y A% [1 [k 2 2
f ) =80 " 1+ — 5+ —7 ... exd —b,«], Po(k,f =715 qudq a*(k=a){f (k—q)ne(a)
k=kA=1, (53 +no(k—a)[f(aq)—f, (k) ]=f,(king(a)}
wherex, Y, a; ,, andb, are some unknown numbers. Obvi- +J K+ )20 f (k+
ously there is no UV divergences i, and ®, for such qIqu okt )3Tkt ano(a)

choice of f,. Furthermore, since inleading order
Ii.mqﬂof/_z a, there is no IR diverger_wce i, andd, asso- —f(K)No(q)}
ciated withf -, so that the IR behavior of thé, and®, is
dominated byny(qr), qir~1/L.

Then in expressioli35) we keep only the terms propor- Now let us change variables in the first integeghk—q.
tional tong(q) andng(k—q): Then we can evaluate integralsagt g,z only:

. (54)

AZ
q’o(k,f/)“—‘m

1
EL dq ?(k—q)%{f .(k—a)no(a) +no(k—aD[f () — f (k) ]—f (K)Ng(q) + f (@) No(k—q) +No(Qq)

X[f/(k—CI)—f/(k)]—f/(k—Q)no(k—Q)}+f dq ?(k+a)?{f (k+a)ne(a) — f (K)ne(a)}

air
A2

" 4wc

1 21,2 _ _
zf dg gk=2no(q)[f(k+aq)—2f (k) +f,(k q)]}
dr

A? k29%f (k)
~8mc K2 dq q4no(Q)- (55)

adir

The second derivative df, is the result of the usual double where we used estimatidd?7) for effective viscosityv. Ac-
cancellation of the IR divergence in the isotropical part oftually we have not calculated accurately tpe-k contribu-

KE. tion in ®,. Note, however, that this contribution would be of
Now we have to evaluat®, atq<k for the choice off ,  lower (in q) order, because lign, ;= —[ck?2(k—q)].
given by Eq.(53). Let us first evaluat®” for q<k: Now Eq. (39) acquires the fornfintroducing dimension-

less constan€, generally speaking of the order of unity

1
N"="tno(a)f (k—a)+[Ne(k—q)—no(k)]f Q) d?f (k) :
a{no(@T k= notk=a) ol 114 }56 GRKN(AR) —ir— = Ce2L s (4 + L) aRkng(am) (K).
(56) (60)
or Note thatng(q,g) cancels from both sides of this equation.
1 Further notice that both terms are of positive sign. Canceling
n/)_ = < gr and k from both sides and substituting=k/A with
N= =g Mo(@f k), g<k. ©7 qr=1/L we get
- d2f
Similarly, —2—d;(K) =C/(/+1)€’k*f (k), k=kL, (61
1
N = ZMo(@f k), <k (58 where we chosé\=L. This equation may be solved in the
Bessel functiongof order 1/4 of imaginary argumentFor
) our goals, however, it would be enough to present only its
Now use Eq(A6) to estimated,: asymptotic form forx>1:
A2 4vk2L a, € ——
CDZ(k’f/):mf dq cPk? o no(q)f (k) f, ()=« 1+7—m+~-- exr{—E\/C/(/+1 KZ),
air (62)
2
=162 giRk*4e’Lno(qR)f(K),  qr=11L, where coefficients,, a4, etc., may be found iteratively:

a,,=3NC/(/+ 1)€2,..., butthese terms really are beyond
(59 the accuracy of Eq61) itself. Solution(62) shows that an-
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isotropic corrections decay exponentially, the rate of decayubstitutingf ,(q) from Eq. (40) one observes here a usual
increases withe? and /' (/' +1). double cancellation of the leading and the first subleading
terms in the IR regime. Therefore integréhl) may be
evaluatedup to a factor as follows:

V. SUMMARY
Let us summarize the logic of this paper. We start from Any(k) k2
generalized kinetic equatiofGKE) (8). The conditions of Do(k,f, )= A fo da d'f,(a). (A2)

time-space resonancéb dictates almost collinear propaga-

tion, so we expand Eq8) in the transverse direction, and Now one sees that the integi@2) converges fox<5 and
arrive to the differential approximation for the collision term diverges for>5. In the latter case we take the outer sdale
In GKE (27.) W'th. Egs. (?8) and(ZQ). We assumevvgakan- as an IR cutoff. Then it is easy to see tlda may be evalu-
isotropy with anisotropic correction in the factorized form ated in different regions of as

(31). After substitution(31) in Egs.(27), (28), (29), we lin-

earizeresulting three-dimensional equatiofwghich are dif- KSX/(5—x) (for x<5)
ferential in angles and integral along the raysxpansion of A?ny(k) b, ’
these equations in series in Legendre polynomiglsfoli- Po~— In(kL) (at x=3),

ates the three-dimensional problem in decoupled sets on one- LX 5/ (x—r) (for 5<x).
dimensional ones, for each separately. We have found the (A3)

power-law solutions of these equatiofkl) and the expo-

nential solutiong12) which are governed by the same pa- Note, that in this limit and fox close to 5®,>0.

rametere®/(/+1). These solutions describe the phenom-

enon of isotropization of nondispersive acoustic turbulence b. UV regime

in the cascade process of energy transfer from anisotropic

region of pumping down to the smaller and smaller sca\Ie?he second integral in Eq35). Here the most dangerous

(k—2°). In the limit k—c the statistics of acoustic turbu- ...« ce to

lence approaches isotropical flux equilibrium. The main re-

sult of the article is that the spectra of acoustic turbulence A2ng(K) (ks

tend to become more isotropic. Dok, f )~ dq o'[f(k+q)—f(q)].
k

(A4)

Next we analyze the regiog>k, i.e., the UV regime in

47rC
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APPENDIX: ANALYSIS OF CONVERGES OF INTEGRALS Herek, is an UV cutoff of the integral which may have
IN THE COLLISION TERMS different nature for different physical situations and will not
be further clarified here. Note, that in the UV regime for
1. ®y(k,f,) behavior close to 4,0,<0. It is known also, thatb,=0 for x=9/2,

the scaling index of the isotropic solution of the KE. Now we

can join Egs.(A3) and (A5) and write evaluation of the
In Eg. (35 one has three different regions dangerous foneading contribution tab,=0 in all regions ofx in the form

IR divergence. These are the regians:0 andg—Kk in the  (41).

first integral andg— 0 in the second one. The first integral

a. IR regime

1/2f(E--- may be split into two integrals 1f&%-- and _ 2. @,(k f,) behavior
1/2[ -+ . In the second one we may change dummy vari- _
ableq—q’ = (k—q) and then to redenot®’ —q. After that a. IR regime
one sees that the integral 2 equal to 1/Z§*-- and Unlike ®,(k,f,), there is no double cancellation of the
therefore the first integral in Eq35), 1/2f£---, may be re- IR contribution(i.e., in the limitsg— 0 andg—k) in the sum
written asf&?... . This integral in the regiog<k together  of the integral37) for ®,(k,f,). The reason is thab’, is
with the second integral in E¢35) may be written as not invariant undeg— k— q transformation. Now, in the IR
regionq<k one has the following simplifications:
A2 (k2
So(kf )~z ], da (k—a)*f () T =2(k2+ k2 Kky) ~20k?,
X[Nno(k—=q)—ng(a)] ckky
) Q0.=620", Qi=r—"—=+cq/2,
+(k+a)*f () [no(k+a)—n(k)]. (A1) - - 2(k=ky)
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" cq 5 b. UV-regime
Lo= In(ﬁ) 2'”( 4vk7) =L. (AB) Next we have to consider the UV regime of the integral in

Eq. (37), i.e., the region of integration withq—k,>k. Here
Substituting these equations into E§7) one gets in the IR we have the simplifications

region
KAZE . I, =2v(K2+k3+kk,)=2v0?, (A13)
— N U ERNIL)
Calkf )=z | daqZNZT=NET (AT) o o e Kk _ck
= =t = —
: () - =7 = T 2(kxky) 27
The most dangerous terms in the combinatibi§” are
o L Q7 ck R
NZ'= 7 {no(a)f (k= q) +[no(k=q) —no(K) If ()} Ly=In| 7—|=Inl 7752 =£-
(A8)
) i Now &, becomes
Together with Eq(32) these yield
1 9q D (K, f )——A2 fk*d Flk+ )2t 1)
N’;<'>=Z[%(q)f.(k):ﬁno(k)f/(q)]. (A9) 21" ga7e J, CATTTA T
Then in the IR limit®, reads APVL [k "
2 272,k Ji da N7, (AL
Bk f vk*A?L fkd
2(kif)= 2z, 994 out of N”() the most divergent for UV term is
x| = no(@F (k) + ng(K)F(q) n1
ol @t )+ nok)EAQ)]. N = 2oL Akt @) = f () T}
(A10)
where we did not care about the numerical factor, just car- T En"(k)f/(q)’ (AL5)

rying the signs. Sincey(k)sk %2 the ny(q)f (k) term al-
ways diverges; the corresponding contribution to the integrajyhere we used that,(q)<q * andg>k. Now in the UV

behaves asklL)*%?no(k)f (k). The second term will di- regime thed,(k,f ) term may be evaluate@ip to a numeri-
verge if f (q)=¢,/q"* with x<3. Symbolically, its contri-  cal factoy as
butions to the integral are

x ) ~ *
_.Wno(k)qs/ k8 (for x<3), ALl CI)Z(k,f/)z—A vLng(K) (k dqFIAD. (ALS)
oKX= [ L? (for x=3). A 2722 J,

Observe that fox>11/2 the contribution of the second term This integral converges for>6 and may be written as fol-
in Eg. (A10) dominates the contribution of the first one. Fi- lows:
nally, the IR contributions tab,(k,f ) are summarized as

AZvLng(K) ¢, [ki—x for x<8,

3p2 ~ 7
VA LNo(K) 6/ Er;o(zk) 24 Po(k.f) 2m2c?x—6] |k for x>6.
27 (A17)
—(kL)¥%3™*  (for x<11/2),

Dok, )~

3 ) Combining Eqs(A17) and(A12), one has after some minor
L (for x>11/2) manipulations(neglecting factors of order 1, difference be-

(A12) tweenf andZ, etc) Eq. (42).
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